P5CDH affects the pathways contributing to Pro synthesis after ProDH activation by biotic and abiotic stress conditions
نویسندگان
چکیده
Plants facing adverse conditions usually alter proline (Pro) metabolism, generating changes that help restore the cellular homeostasis. These organisms synthesize Pro from glutamate (Glu) or ornithine (Orn) by two-step reactions that share Δ(1) pyrroline-5-carboxylate (P5C) as intermediate. In the catabolic process, Pro is converted back to Glu using a different pathway that involves Pro dehydrogenase (ProDH), P5C dehydrogenase (P5CDH), and P5C as intermediate. Little is known about the coordination of the catabolic and biosynthetic routes under stress. To address this issue, we analyzed how P5CDH affects the activation of Pro synthesis, in Arabidopsis tissues that increase ProDH activity by transient exposure to exogenous Pro, or infection with Pseudomonas syringae pv. tomato. Wild-type (Col-0) and p5cdh mutant plants subjected to these treatments were used to monitor the Pro, Glu, and Orn levels, as well as the expression of genes from Pro metabolism. Col-0 and p5cdh tissues consecutively activated ProDH and Pro biosynthetic genes under both conditions. However, they manifested a different coordination between these routes. When external Pro supply was interrupted, wild-type leaves degraded Pro to basal levels at which point Pro synthesis, mainly via Glu, became activated. Under the same condition, p5cdh leaves sustained ProDH induction without reducing the Pro content but rather increasing it, apparently by stimulating the Orn pathway. In response to pathogen infection, both genotypes showed similar trends. While Col-0 plants seemed to induce both Pro biosynthetic routes, p5cdh mutant plants may primarily activate the Orn route. Our study contributes to the functional characterization of P5CDH in biotic and abiotic stress conditions, by revealing its capacity to modulate the fate of P5C, and prevalence of Orn or Glu as Pro precursors in tissues that initially consumed Pro.
منابع مشابه
Proline dehydrogenase contributes to pathogen defense in Arabidopsis.
L-proline (Pro) catabolism is activated in plants recovering from abiotic stresses associated with water deprivation. In this catabolic pathway, Pro is converted to glutamate by two reactions catalyzed by proline dehydrogenase (ProDH) and Δ(1)-pyrroline-5-carboxylate dehydrogenase (P5CDH), with Δ(1)-pyrroline-5-carboxylate (P5C) as the intermediate. Alternatively, under certain conditions, the ...
متن کاملUnraveling delta1-pyrroline-5-carboxylate-proline cycle in plants by uncoupled expression of proline oxidation enzymes.
The two-step oxidation of proline in all eukaryotes is performed at the inner mitochondrial membrane by the consecutive action of proline dehydrogenase (ProDH) that produces Delta(1)-pyrroline-5-carboxylate (P5C) and P5C dehydrogenase (P5CDH) that oxidizes P5C to glutamate. This catabolic route is down-regulated in plants during osmotic stress, allowing free Pro accumulation. We show here that ...
متن کاملRegulation of levels of proline as an osmolyte in plants under water stress.
Compatible osmolytes are potent osmoprotectants that play a role in counteracting the effects of osmotic stress. Proline (Pro) is one of the most common compatible osmolytes in water-stressed plants. The accumulation of Pro in dehydrated plants is caused both by activation of the biosynthesis of Pro and by inactivation of the degradation of Pro. In plants, L-Pro is synthesized from L-glutamic a...
متن کاملEthylene-mediated cross-talk between calcium-dependent protein kinase and MAPK signaling controls stress responses in plants.
Plants are constantly exposed to environmental changes and need to integrate multiple external stress cues. Calcium-dependent protein kinases (CDPKs) are implicated as major primary Ca2+ sensors in plants. CDPK activation, like activation of mitogen-activated protein kinases (MAPKs), is triggered by biotic and abiotic stresses, although distinct stimulus-specific stress responses are induced. T...
متن کاملFirst evidence for substrate channeling between proline catabolic enzymes: a validation of domain fusion analysis for predicting protein-protein interactions.
Proline dehydrogenase (PRODH) and Δ(1)-pyrroline-5-carboxylate (P5C) dehydrogenase (P5CDH) catalyze the four-electron oxidation of proline to glutamate via the intermediates P5C and l-glutamate-γ-semialdehyde (GSA). In Gram-negative bacteria, PRODH and P5CDH are fused together in the bifunctional enzyme proline utilization A (PutA) whereas in other organisms PRODH and P5CDH are expressed as sep...
متن کامل